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A B S T R A C T   

A selective, simple, rapid, green, cost-effective, and non-destructive assay was proposed for the simultaneous 
quantitation of Fampridine (FPN), Dexamethasone (DMS), and Fluoxetine (FLX) in spiked human plasma and 
commercial dosage forms without interference from common drugs excipients. The solid state of a tertiary 
mixture of FPN, DMS, and FLX was determined by Fourier transformation infrared (FTIR) Spectroscopy. The 
calibration curves were linear in the ranges of 1.0–8.0, 0.9–8.0, and 1.2–10.0 µg/mg for FPN, DMS, and FLX, 
respectively. The limits of detection (LODs) were 0.34, 0.30, and 0.40, and the limits of quantitation (LOQs) were 
1.0, 0.9, and 1.2 µg/mg for FPN, DMS, and FLX respectively. The suggested method was validated using the ICH 
guidelines. The presented assay was properly used for the analysis of the cited drugs in spiked human plasma and 
pharmaceutical formulations.   

1. Introduction 

Multiple sclerosis (MS), also known as encephalomyelitis dissemi-
nate [1], is a widespread neurological disease that affects more than 2.3 
million individuals worldwide. MS is a condition diagnosed by neuro-
logical inflammation of the Central Nervous System (CNS) [2,3]. MS is a 
demyelinating disease in which nerve cells in the brain and spinal cord 
lose their protecting covers [1]. MS damages myelin and axons in the 
CNS to varying degrees, which impairs the ability of the nervous system 
to transmit signals, resulting in a variety of signs and symptoms 
including physical, emotional, double vision, blindness in one eye, 
muscle fatigue, and problems with sensation or balance [4,5]. MS was 
first recognized as a disease in 1868 by Jean-Martin Charcot, a professor 
of Neurology at Paris University, who referred to the condition as 
sclérose en plaques. T-cells were identified to induce MS. The activity of 
B-cell-focused therapies defies the autoimmune dogma of T-cell [3]. 
Fampridine (FPN, Fig. 1a) is a symptomatic treatment for MS that en-
hances axonal conduction factor at demyelinated internodes by facili-
tating neural influx transmission through demyelinated axons, 
and blocking the K+ channel at millimolar concentrations [6–9]. FPN 

whose clinical neurologic effects are similar to the K+ channel molecular 
mechanism blockade, can increase cellular-level neuronal excitability. 
FPN can also improve synaptic and neuromuscular transmission by 
enhancing the conduction in demyelinated axons [10,11]. In 2010, the 
Food and Drug Administration (FDA) approved the use of FPN in pa-
tients with MS to enhance their walking capacity. Because the effects of 
FPN are not limited to long motor pathways, patients may experience 
functional benefits in addition to increased walking speed [9]. FPN 
causes a slower increase to a lower peak concentration (Cmax), 3–4 h 
after administration, with no effect on the area under the curve (AUC). 
Also, there is a small increase to Cmax and a small decrease to AUC when 
FPN is taken with food. FPN was fully and rapidly removed as un-
changed medication by urinary excretion within 24 h indicating that 
FPN does not undergo significant metabolic change. Various studies 
revealed that CYP2E1 was the main enzyme responsible for the hy-
droxylation of FPN. As a result, 3-Hydroxy-4-aminopyridine and 3-hy-
droxy-4-aminopyridine sulfate were FPN metabolites [12–14]. 
Fluoxetine hydrochloride (FLX, Fig. 1b) is an antidepressant, known as a 
selective serotonin-reuptake inhibitor (SSRI), used to treating depres-
sion and other psychiatric conditions [15]. FLX has been shown in rats 
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with experimental autoimmune encephalitis and patients with relapsing 
MS to minimize inflammatory responses. Many preclinical studies 
indicate that FLX has neuroprotective properties that could benefit pa-
tients with MS [16]. FLX increases the release of brain-derived neuro-
trophic factor from astrocytes and activates astrocytic glycogenolysis 
which is necessary for astrocyte absorption of sodium-dependent 
glutamate and lactate release which provides energy to axons. FLX can 
enhance the release of astrocytes from neurotrophic neuroprotective 
brain-derived factor, dilates cerebral arterioles, and increases cerebral 
blood flow independent of the endothelium [16–19]. After oral admin-
istration, FLX is well-absorbed from the gastrointestinal tract and the 
presence of food does not affect its bioavailability in both healthy vol-
unteers and patients with depression. Demethylation of FLX in the liver 
produces norfluoxetine (NFLX), the only active metabolite. Electroen-
cephalogram testing revealed that maximal CNS efficacy occurred be-
tween 8 and 10 h post-dose. A delay in the formation of NFLX may 
explain the time difference between Cmax and maximal pharmacody-
namic effects [20]. Dexamethasone (DMS, Fig. 1c) is an anti- 
inflammatory corticosteroid can be taken orally or given as an injec-
tion to treating MS relapse [21]. DMS can enhance the resolution of 
lesional edema and blood reversal in MS. The FDA has only approved the 
generic brand of the drug for the treatment of MS. Three more polar 
metabolites of DMS were discovered in urine. The identity of these 
metabolites has not been recognized, but their levels in urine increased 
after diphenylhydantoin induction of hepatic enzymes [22,23]. DMS is 
well-known as a substrate and inducer of CYP3A. As a result, DMS Cmax 
in nude mice may be attributed to its induction of CYP3A after several 
doses [24]. Because, these medications are used in combination to 
treating MS symptoms [21,25], simultaneous quantitation of FPN, DMS, 
and FLX is highly important. Different articles for the determination of 
the cited drugs have been published, including; fluorometry [26,27], LC- 
MS/MS [28–30], HPLC-DA [31–33], HPLC-UV [34], electrochemistry 
[35], spectrophotometry [36,37], electrophoresis [8,38,39]. Green 
Chemistry (GC) is concerned with the application of methodologies and 
analytical tools to minimize or eliminate the use or production of 
chemicals which are hazardous to human health or the environment 
[40–42]. The development of alternative direct procedures that do not 
include organic solvents is one of the three ways to reduce the negative 
environmental effects of analytical procedures. Solid-phase extraction 
(SPE) is a useful technique for minimizing the use of large quantities of 
organic solvents in pre-concentration and extraction procedures. 
Molecularly imprinted polymers (MIPs) is also of interest in GC, as it can 
be used as SPE units. Liquid phase microextraction is also a new tech-
nique that uses a small amount of solvents [41]. As a result, incorpo-
rating GC concepts into the design of analytical methods is important for 

decreasing harmful environmental and human health negative impacts. 
Infrared has many benefits to qualify and quantify active principle in-
gredients (APIs) in semi-solid, solid-state, and biological matrices 
(whole blood, serum, plasma, urine, human milk, amniotic fluid cere-
brospinal fluid, skin, hair, and tissues) [43–50]. Because of their 
versatility, speed, ease of use, and low solvent consumption, FTIR 
spectroscopic methods are used to monitor drug quality. For evaluating 
the studied drugs in medicinal formulations, FTIR methods are 
frequently less time-consuming and non-destructive procedures. At the 
same time, common drug additives do not cause any considerable 
interference. As, FTIR methods do not need a large quantities of solvents, 
they help to reduce the environmental hazards associated with indus-
trial chemical waste [47,51,52]. The presented work aims to develop a 
simple, non-destructive, echo-friendly FTIR assay for the quantitation of 
FPN, DMS, and FLX in pure and medicinal dosage forms, in addition to 
the quantitation of a ternary mixture containing the cited drugs. The 
ternary mixture analysis was performed to show that the proposed 
method is capable of identifying the cited drugs in a combination. This is 
the first time a basic FTIR method has been used to evaluate this ternary 
mixture in spiked human plasma, pure form, and pharmaceutical 
formulations. 

2. Experimental 

2.1. Materials and reagents 

Potassium bromide (KBr, IR grade) and chloroform were obtained 
from Sigma Aldrich (Munich, Germany), FPN was purchased from Acros 
Organics (Geel, Belgium). DMS and FLX were kindly supplied by Kahira 
Pharmaceutical and Chemical Industries, Cairo, Egypt. 

2.2. Standard powders preparation 

Accurately weighed quantities equivalent to 50.0 mg of each of FPN, 
DMS, and FLX, were properly and individually transported to a porcelain 
dish. The powder was mixed in 10.0 g KBr to achieve a final concen-
tration of 5.0 mg/g for all the cited drugs. 

2.3. Instrumentations 

A Nicolet 6700 FTIR Gold Spectrometer was used for all FTIR mea-
surements and the data was processed using OMNIC software version 8 
(Madison, Wisconsin, US). All hydraulic presses were operated via a 
Perkin Elmer die press (Fisher Scientific Instruments Corporation, 
Massachusetts, United States). KBr discs of FPN, DMS, and FLX were 

Fig. 1. Chemical structures of Fampridine (a), Fluoxetine (b), and Dexamethasone (C).  
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prepared using the Qwik handi press. The resolution of spectra was 
obtained by taking the average of 32 scans in the mid-IR region 
(4000–400 cm− 1). GRAMSAI was used to manage the FTIR spectra 
which have been imported into the Galactic SPC format (Galactic In-
dustries, Salem, NH, USA, version 7.01). 

2.4. Pharmaceutical formulations 

Dalfarosis® tablets; defined to contain 10 mg FPN (B.N. # 190715) 
manufactured by Al-Andalus Pharmaceutical Industries, Cairo, Egypt. 
Dexazone® tablets; defined to contain 0.5 mg DMS (B.N. # 20103334) 
manufactured by Kahira Pharmaceutical and Chemical Industries, Cairo, 
Egypt. Philozac® capsules, defined to contain 20 mg FLX (B.N. # 
196177) manufactured by Amoun Pharmaceutical Industries Company, 
El Obour City, Cairo, Egypt. 

2.5. Method procedure 

Accurately weighed quantities of FPN, DMS, and FLX were applied to 
a 1.0 g KBr powder in a porcelain mortar, resulting in final concentra-
tions of (1.0–5.0 g/mg), (1.0–10 g/mg), and (1.0–10 g/mg) for FPN, 
DMS, and FLX, respectively. The powders were thoroughly mixed using 
a 15 mm porcelain mortar and pestle. The cited drugs and their com-
mercial preparations were scanned in the Mid-IR region (4000–400 
cm− 1). By plotting the peak area of the selected FTIR band against drug 
concentration, the standard calibration curves were established. 

2.6. KBr disk preparation 

The 1.0 g KBr homogenized disks were made by mixing suitable 
amounts of FPN, DMS, FLX, ternary mixture (FPN, DMS, and FLX), and 
oven-drying was used to remove any remaining water vapors. The dried 
drugs were ground in a 15 mm porcelain mortar and pestle to decrease 
the particle size of the studied drugs after which subjected to a pressure 
of 5 tons for 5 min before FTIR measurements. For recording FTIR 
spectra, the studied drugs and their pharmaceutical preparations were 
scanned in the Mid-IR region (4000–400 cm− 1). 

2.7. Applications 

2.7.1. Analysis of FPN, DMS, and FLX in spiked human plasma 
The blood samples were collected from healthy volunteers at the 

Hospital of Sohag University. All the volunteers gave written permission 
to use the samples obtained from them for research after being informed 
about the study’s purpose and application. The protocol of plasma 
sampling from healthy volunteers followed the Declaration of Helsinki 
Recommendations [53] and the rules of Good Clinical Practice [54]. 5.0 
mL of blood sample was drawn from healthy volunteers and transported 
to tubes containing EDTA. For isolation of plasma samples, 1.0 mL 
chloroform was added to the blood sample and centrifuged at 2000 rpm 
for 10 min to precipitate plasma proteins, after which 1.0 mL of the 
extracted plasma was spiked with 1.0 mL of the solution of the stud-
ied drug (2, 4, and 5 µg/mg of each) and centrifuged at 2000 rpm for 10 
min [40]. After ensuring that the resulting supernatant was within the 
studied drugs concentration ranges, the general assay procedures were 
followed as mentioned under Section 2.5. 

2.7.2. Pharmaceutical preparations 
For each pharmaceutical formulation containing FPN, FLX, or DMS, 

20 tablets were precisely weighed, finely powdered in a mortar, and 
thoroughly blended. An amount of each studied drug equal to 10 mg was 
then transported to a 50 mL volumetric flask and dissolved in approxi-
mately 25 mL of chloroform. The flask’s contents were swirled, rotated 
for 20 min, and thereafter filled up to the desired volume with the same 
solvent. The contents of the flasks were mixed, then filtered. The pro-
posed assay was used to analyze different volumes of the diluted 

solutions. 

3. Results and discussions 

The absorbance mode of operation was used to record FTIR spectra of 
FPN, DMS, and FLX in the range of 4000–400 cm− 1 using the absorbance 
mode of operation. These spectra demonstrate the complexity of the 
structural information that is obtained from the FTIR bands. Further-
more, scanning individual spectra of FPN co-formulated with DMS and 
FLX produced the following significant bands: 3175, 1705, and 1250 
cm− 1 for FPN, DMS, and FLX, respectively, which correspond to N–H, C 
= O, and C-F stretching band Fig. 2. The distinctive FTIR wavenumbers 
are listed in Table 1. Assignment of the prominent FTIR features was 
carried out according to previously reported FTIR spectroscopic data 
[55–60]. 

3.1. Validation of the suggested method 

The proposed procedures were validated using ICH guidelines to 
confirm that the developed method complies with the requirements of 
the studied analytical performance [61]. all validation experiments 
were examined through the established calibration range of the sug-
gested method to confirm the validation of the suggested method. 

3.1.1. Linearity & range 
To minimize the relative error, calibration curves for FPN, DMS, and 

FLX were established by measuring a series of five concentrations for 
each studied drug and taking an average of three readings for each 
concentration. The regression equations were calculated using the least- 
squares method [62], and the corrected peak area intensity versus 
concentrations within the defined range was constructed and statisti-
cally handled. The calibration curves were linear over the concentration 
ranges of 1.0–8.0, 0.9–8.0, and 1.2–10.0 for FPN, DMS, and FLX, 
respectively. Different analytical parameters for FPN, DMS, and FLX 
were calculated including determination coefficient (0.9649, 0.9894, 
and 0.9854), intercept (0.0559, 0.0056, and 0.0163), slope (0.2262, 
0.0745, and 0.1224), and the intercept standard deviation (0.0232, 
0.0074, and 0.0185). The results were summarised in Table 2. 

3.1.2. Limits of detection (LOD) and limits of quantitation (LOQ) 
According to the rules of ICH [61], LODs and LOQs for the cited 

drugs were determined applying the following equations: 

LOD = 3.3σ/S 

LOQ = 10σ/S, where; S is the slope of the calibration curves and σ is 
the standard deviation of the intercept. The LODs were 0.34, 0.30, and 
0.40 while LOQs were 1.0, 0.9 and 1.2 µg/mg for FPN, DMS, and FLX 
respectively. The results were presented in Table 2. 

3.1.3. Precision and accuracy 
The regression equations of FPN, DMS, and FLX were used to eval-

uate each of them at three different concentration levels to assign re-
covery studies for the proposed FTIR method. The reasonable accuracy 
of the proposed method was determined by the closeness of the obtained 
percent recovery values to the true values, as shown in Table 3. 

The observed relative standard deviations (RSDs) were less than 
2.0%, indicating that the proposed method was repeatable. The results 
were expressed in Table 2. 

3.1.4. Ruggedness 
It was tested to determine the studied drugs by using the same 

method procedures on two different apparatus within two different labs 
and at different times. The data obtained show that the suggested 
method is reproducible, the results were presented in Table 4. 
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3.2. Applications 

3.2.1. Spiked human plasma with the studied drugs 
The sensitivity of the suggested method permitted the analysis of 

FPN, DMS, and FLX in spiked human plasma. The cited drugs concen-
trations were calculated using the regression equations for each drug. 
Table 5, demonstrated the approximate mean recovery values. The ob-
tained results revealed that the proposed assay is appropriate for the 
detection of the cited drugs in spiked human plasma. 

3.2.2. Pharmaceutical tablets 
The proposed method has been used to monitor commercial tablets 

of the studied drugs and the obtained results were compared to those of 
published articles using Student’s t- and F-tests at 95% confidence level 
[27,36,37]. It was observed that there was no significant difference 
between the calculated results of the proposed FTIR method and ob-
tained results of the reported methods. This confirms the good precision 
and reliability of the proposed assay to quantify the studied drugs, the 
results were summarized in Table 6. 

4. Conclusion 

For the first time, a new selective FTIR spectroscopic method was 
proposed to determine FPN, DMS, and FLX in pure and a tertiary 
mixture. The advantages of this method include; sensitivity, cost- 
effectiveness, and environmental friendliness. As a result of these ben-
efits, this technique is a simple, precise, and effective way to evaluate 
these drugs in commercial tablets with high accuracy and lower excip-
ients interference. Because of its sensitivity, the suggested method 
allowed the analysis of the studied drugs in spiked human plasma. 
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Fig. 2. The FTIR spectra of FPN (a), DMS (b), and FLX (c) in the region of 4000-400 cm-1.  

Table 1 
The distinctive FTIR wavenumbers (cm1) of the studied drugs.  

FTIR wavenumber Assignment* 

FPN DMS FLX 

3405  3420 υ(NH) and υ(NH2) 
3350   υ(NH2) 
3175   υ(NH) 
2995 2980  υ(CH)  

2950 2960 υ(CH) and C–C ring modes 
2925 2933  υ(CH3) and C–C ring modes 
2855 2872  combination: (C = O) in-plane and C–C ring modes  

1705  υ(C = O) 
1618 1605 1616 υ(C = C)   

1585 υ(C–C) ring   
1517 δ(CCC)  

1461 1475 δ(CCH) 
1455 1437 1455 δ(CH)  

1412 1425 δ(CH) 
1366 1377  δ(CH2) 
1333  1355 υ(C-N) 
1270 1290  in-plane δ(CH)   

1250 υ(C-F)  
1135 1122 in-plane δ(CH) 

1055 1050 1050 in-plane δ(CH) 
1022 1035 1025 in-plane δ(CH) 
985 990 960 out-of-plane δ(C–H) 
844 860 840 out-of-plane δ(C–H) ring 
830  820 out-of-plane δ(C–H) 
666  650 ring deformation 
535  520 in-plane δ(CC) 
443  475 out-of-plane δ(CCC) 

*υ and δ stand for stretching and bending, respectively. 

Table 2 
The analytical parameters of FTIR spectroscopic method for assay of the cited 
drugs.  

Analytical parameter FPN DMS FLX 

Linearity range (µg/ 
mg) 

1.0–8.0 0.9–8.0 1.2–10.0 

Determination 
coefficient (r2) 

0.9649 0.9894 0.9854 

Regression equation Y = 0.0559 +
0.2262X 

Y = 0.0056 +
0.0745X 

Y = 0.0163 +
0.1224X 

Slope (b) ± SD 0.2262 ±
0.0249 

0.0745 ±
0.0029 

0.1224 ±
0.0067 

Intercept (a) ± SD 0.0559 ±
0.0232 

0.0056 ±
0.0074 

0.0163 ±
0.0185 

LOD (µg/mg) 0.34 0.30 0.40 
LOQ (µg/mg) 1.0 0.90 1.2  
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FPN (4.0 µg/mg) DMS (4.0 µg/mg) FLX (5.0 µg/mg) 

1- Instrument Nicolet 6700 FTIR   
99.7 ± 0.72 98.1 ± 1.38 100.2 ± 1.15 
Jasco 6000 FTIR   
99.3 ± 1.05 100.1 ± 1.04 99.7 ± 0.65 
2- Inter-day variation   
1 day 99.7 ± 0.72 98.1 ± 1.38 100.2 ± 1.15 
1 day 99.5 ± 0.98 97.3 ± 0.71 98.8 ± 0.54 

* Average of three determinations. 

Table 5 
Application of the proposed FTIR spectroscopic method for assay of the cited 
drugs in spiked human plasma.  

Drug Add conc. (µg/mg) Found conc. (µg/mg) %Recovery* ± SD   

2.0  1.96 97.8 ± 0.92 
FPN  4.0  3.88 97.1 ± 0.28   

5.0  4.90 98.0 ± 1.03   
2.0  1.96 98.2 ± 0.74 

DMS  4.0  3.92 98.1 ± 0.67   
5.0  4.86 97.5 ± 0.88   
2.0  1.95 97.3 ± 0.36 

FLX  4.0  3.90 97.6 ± 0.45   
5.0  4.92 98.3 ± 0.97 

* Average of three determinations. 

Table 6 
Comparison between the proposed FTIR spectroscopic assay and the reported 
methods for determination of the selected drugs in their tablet dosage forms.  

Pharmaceutical 
formulations 

% Recovery ± SDa t- 
valueb 

F- 
valueb 

Proposed 
methods 

Reported 
methods 

Dalfarosis® (10 mg FPN/ 
Tablet) 

102.5 ± 0.79 101.5 ± 0.57  1.88  1.62 

Dexazone® (0.5 mg 
DMS/Tablet) 

100.3 ± 1.33 98.1 ± 1.25  1.13  2.36 

Philozac® (20 mg FLX/ 
Capsule) 

99.5 ± 1.12 97.3 ± 0.79  2.00  2.53  

a Average of three determinations. 
b Tabulated values at 95% confidence limit are t = 2.306, F = 6.338. 
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